314 research outputs found

    SPH Simulations with Reconfigurable Hardware Accelerator

    Full text link
    We present a novel approach to accelerate astrophysical hydrodynamical simulations. In astrophysical many-body simulations, GRAPE (GRAvity piPE) system has been widely used by many researchers. However, in the GRAPE systems, its function is completely fixed because specially developed LSI is used as a computing engine. Instead of using such LSI, we are developing a special purpose computing system using Field Programmable Gate Array (FPGA) chips as the computing engine. Together with our developed programming system, we have implemented computing pipelines for the Smoothed Particle Hydrodynamics (SPH) method on our PROGRAPE-3 system. The SPH pipelines running on PROGRAPE-3 system have the peak speed of 85 GFLOPS and in a realistic setup, the SPH calculation using one PROGRAPE-3 board is 5-10 times faster than the calculation on the host computer. Our results clearly shows for the first time that we can accelerate the speed of the SPH simulations of a simple astrophysical phenomena using considerable computing power offered by the hardware.Comment: 27 pages, 13 figures, submitted to PAS

    The Dynamical Implications of Multiple Stellar Formation Events in Galactic Globular Clusters

    Get PDF
    Various galactic globular clusters display abundance anomalies that affect the morphology of their colour-magnitude diagrams. In this paper we consider the possibility of helium enhancement in the anomalous horizontal branch of NGC 2808. We examine the dynamics of a self-enrichment scenario in which an initial generation of stars with a top-heavy initial mass function enriches the interstellar medium with helium via the low-velocity ejecta of its asymptotic giant branch stars. This enriched medium then produces a second generation of stars which are themselves helium-enriched. We use a direct N-body approach to perform five simulations and conclude that such two-generation clusters are both possible and would not differ significantly from their single-generation counterparts on the basis of dynamics. We find, however, that the stellar populations of such clusters would differ from single-generation clusters with a standard initial mass function and in particular would be enhanced in white dwarf stars. We conclude, at least from the standpoint of dynamics, that two-generation globular clusters are feasible.Comment: 24 pages, 7 figures, 3 tables. Accepted for publication in Ap

    Pseudoparticle Multipole Method: A Simple Method to Implement High-Accuracy Treecode

    Get PDF
    In this letter we describe the pseudoparticle multipole method (P2M2), a new method to express multipole expansion by a distribution of pseudoparticles. We can use this distribution of particles to calculate high order terms in both the Barnes-Hut treecode and FMM. The primary advantage of P2M2 is that it works on GRAPE. GRAPE is a special-purpose hardware for the calculation of gravitational force between particles. Although the treecode has been implemented on GRAPE, we could handle terms only up to dipole, since GRAPE can calculate forces from point-mass particles only. Thus the calculation cost grows quickly when high accuracy is required. With P2M2, the multipole expansion is expressed by particles, and thus GRAPE can calculate high order terms. Using P2M2, we implemented an arbitrary-order treecode on GRAPE-4. Timing result shows GRAPE-4 accelerates the calculation by a factor between 10 (for low accuracy) to 150 (for high accuracy). Even on general-purpose programmable computers, our method offers the advantage that the mathematical formulae and therefore the actual program is much simpler than that of the direct implementation of multipole expansion.Comment: 6 pages, 4 figures, latex, submitted to ApJ Letter

    Binary Black Hole Mergers from Planet-like Migrations

    Get PDF
    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing towards a binary lifetime far shorter than the Hubble time. We show that, regardless of the detailed mechanism, all stellar-dynamical processes are insufficient to reduce significantly the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.Comment: 8 pages, submitted to ApJ Letter

    Formation of Protoplanets from Massive Planetesimals in Binary Systems

    Full text link
    More than half of stars reside in binary or multiple star systems and many planets have been found in binary systems. From theoretical point of view, however, whether or not the planetary formation proceeds in a binary system is a very complex problem, because secular perturbation from the companion star can easily stir up the eccentricity of the planetesimals and cause high-velocity, destructive collisions between planetesimals. Early stage of planetary formation process in binary systems has been studied by restricted three-body approach with gas drag and it is commonly accepted that accretion of planetesimals can proceed due to orbital phasing by gas drag. However, the gas drag becomes less effective as the planetesimals become massive. Therefore it is still uncertain whether the collision velocity remains small and planetary accretion can proceed, once the planetesimals become massive. We performed {\it N}-body simulations of planetary formation in binary systems starting from massive planetesimals whose size is about 100-500 km. We found that the eccentricity vectors of planetesimals quickly converge to the forced eccentricity due to the coupling of the perturbation of the companion and the mutual interaction of planetesimals if the initial disk model is sufficiently wide in radial distribution. This convergence decreases the collision velocity and as a result accretion can proceed much in the same way as in isolated systems. The basic processes of the planetary formation, such as runaway growth and oligarchic growth and final configuration of the protoplanets are essentially the same in binary systems and single star systems, at least in the late stage where the effect of gas drag is small.Comment: 26pages, 11 figures. ApJ accepte

    The influence of gas expulsion and initial mass-segregation on the stellar mass-function of globular star clusters

    Full text link
    Recently de Marchi, Paresce & Pulone (2007) studied a sample of twenty globular clusters and found that all clusters with high concentrations have steep stellar mass-functions while clusters with low concentration have comparatively shallow mass-functions. No globular clusters were found with a flat mass-function and high concentration. This seems curious since more concentrated star clusters are believed to be dynamically more evolved and should have lost more low-mass stars via evaporation, which would result in a shallower mass-function in the low-mass part. We show that this effect can be explained by residual-gas expulsion from initially mass-segregated star clusters, and is enhanced further through unresolved binaries. If gas expulsion is the correct mechanism to produce the observed trend, then observation of these parameters would allow to constrain cluster starting conditions such as star formation efficiency and the time-scale of gas expulsion.Comment: accepted for publication in MNRAS, 10 pages, 6 figure

    The PCI Interface for GRAPE Systems: PCI-HIB

    Full text link
    We developed a PCI interface for GRAPE systems. GRAPE(GRAvity piPE) is a special-purpose computer for gravitational N-body simulations. A GRAPE system consists of GRAPE processor boards and a host computer. GRAPE processors perform the calculation of gravitational forces between particles. The host computer performs the rest of calculations. The newest of GRAPE machines, the GRAPE-4, achieved the peak performance of 1.08 Tflops. The GRAPE-4 system uses TURBOChannel for the interface to the host, which limits the selection of the host computer. The TURBOChannel bus is not supported by any of recent workstations. We developed a new host interface board which adopts the PCI bus instead of the TURBOChannel. PCI is an I/O bus standard developed by Intel. It has fairly high peak transfer speed, and is available on wide range of computers, from PCs to supercomputers. Thus, the new interface allows us to connect GRAPE-4 to a wide variety of host computers. In test runs with a Barnes-Hut treecode, we found that the performance of new system with PCI interface is 40% better than that of the original system.Comment: 15 pages, 10 Postscript figures, 3 tables, Latex, submitted to Publications of the Astronomical Society of Japan. corrected figure 2 which contained non standard font
    • …
    corecore